The Innovative Ceiling Robot

Timo Overboon, MSc.
Johan Smeets, MSc.
Dr. ir. Helm Jansen
Prof. dr. Elena Lomonova
Outline

• Background concept
• Magnetically suspended planar motor
• Contactless energy transfer system
• Prototype
• Measurement results
Research areas EPE group

- Actuators for high-tech mechatronics
- Motors and drives for automotive systems
- High-speed electrical machines
- Actuators for medical applications
- Multi-level and multi-port converters
- Wireless energy transmission
- Electromagnetic design & analysis tools
Magnetic levitation and propulsion

Levitated planar motor
Flying carpet
Based on repulsive force

Suspended planar motor
Ceiling Robot
Based on attractive force

Levitation
Suspension
Multiple movers for PCB assembly

Top view

Component feeder

Mover 1

Mover 2

Mover 3

Mover 4

PCB
Novel actuator concept for Pick & Place applications, including:

- Magnetic suspension
- Planar propulsion
- Fail-safe operation
- Contactless energy & data transfer
- Position detection
Magnetic suspension & propulsion

Magnetically suspended ceiling actuator
– Mover actuated underneath stator/ceiling
– Gravity compensation based on attractive force

Requirements
• Control in 6 degrees-of-freedom \((x, y, z, \psi, \theta, \phi)\)
• Long-stroke actuation in xy-plane
• Passive gravity compensation & fail-safety
 → Iron and permanent magnets
Checkerboard PM array for “unlimited” stroke in xy-plane

4 iron-cored linear motors
- Separately excited three-phase
- Rotated 45° wrt to PM array
- Propulsion force along x or y
- Passive normal force, $F_{z,r}$
Model single linear motor

Based on dq-decomposition 3 phase currents

- Small force ripples:
 \[F_x = k_x I_q \]
 \[F_y = 0 \]
 \[F_z = F_{z,r} + k_z I_d \]

- Only considerable torque T_y [1]:
 \[T_y(x) = T_{y,r}(x) + k_d(x) I_d + k_q(x) I_q \]

Model ceiling robot

- Total sum of forces and torques:

\[\overrightarrow{\omega} = \Gamma \overrightarrow{I} + \Gamma_0 \]

- Wrench vector:

\[\overrightarrow{w} = [F_x \ F_y \ F_z \ T_x \ T_y \ T_z]^T \]

- Current vector:

\[\overrightarrow{I} = [I_{d,1} \ I_{q,1} \ \ldots \ I_{d,4} \ I_{q,4}]^T \]

Force & torque decoupling

- Inverse model:

\[\overrightarrow{I} = \Gamma^{-} (\overrightarrow{w}_{des} - \Gamma_0) \]

- \(\Gamma^{-} \): Moore-Penrose inverse for minimized losses
Goal: Minimized ohmic losses during acceleration (a)

$$P_{losses} = \frac{3R_{coil}}{2k^2} \left((mg - 4F_{z,r})^2 + 4m^2a^2 + 4m^2a^2 \frac{r_z^2}{r_1^2 + r_2^2} \right)$$

- **Requirements:**
 - Peak acceleration: 7 m/s2
 - Mass payload: 6 kg
- Optimization performed with 2D & 3D analytical models

Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole pitch (τ_p)</td>
<td>12 mm</td>
</tr>
<tr>
<td>Magnet height (h_m)</td>
<td>4.2 mm</td>
</tr>
<tr>
<td>Remanence (B_{rem})</td>
<td>0.77 T</td>
</tr>
<tr>
<td>Airgap length (h_g)</td>
<td>3 mm</td>
</tr>
<tr>
<td>Stack length (L_s)</td>
<td>54 mm</td>
</tr>
<tr>
<td>Slot height (h_s)</td>
<td>12 mm</td>
</tr>
<tr>
<td>Slot pitch (τ_s)</td>
<td>10.9 mm</td>
</tr>
<tr>
<td>Total mass (m)</td>
<td>12 kg</td>
</tr>
</tbody>
</table>
Magnetic loading

\[P_{\text{losses}} = \frac{3R_{\text{coil}}}{2k^2} \left((mg - 4F_{z,r})^2 + 4m^2a^2 + 4m^2a^2 \frac{r_z^2}{r_1^2 + r_2^2} \right) \]

- \(F_{z,r} \sim B^2 \) → magnetic loading limited
- \(k \sim B \) → motor constant low
- Magnet grade with low \(B_{\text{rem}} \) → plastic bonded magnets
- Large airgap length depends on acceleration → CET inside airgap

\[(mg - 4F_{z,r}) = 0 \]

\[k > \]

TU/e
Technische Universiteit Eindhoven
University of Technology
Contactless transfer of energy

Based on resonant inductive coupling
- Primary coils integrated in the airgap of the planar motor
- Secondary coil beside each linear motor on the mover

Requirements
- Average output power of 335W
- Low positional variation
- Integrated in the Ceiling Robot
Magnetic model: 3D Harmonic Modeling

Solution derived for 3D magnetic vector potential with Fourier series to model the inductance of the coils [1]

\[
\begin{bmatrix}
\frac{\partial^2 A_x}{\partial x^2} + \frac{\partial^2 A_x}{\partial y^2} + \frac{\partial^2 A_x}{\partial z^2} \\
\frac{\partial^2 A_y}{\partial x^2} + \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_y}{\partial z^2} \\
\frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2}
\end{bmatrix}
\begin{bmatrix}
J_{\text{coil},x} \\
J_{\text{coil},y} \\
0
\end{bmatrix} = -\mu
\begin{bmatrix}
\sigma \frac{\partial A_x}{\partial t} \\
\sigma \frac{\partial A_y}{\partial t} \\
0
\end{bmatrix}
\]

Ability to include

- Coils and magnets
- Conducting and soft-magnetic materials
- Including eddy-current reaction field
- Slots and cavities

Electric model

Circuit model for multiple primary and a single secondary coil

Output secondary coils connected in series

\[
\begin{bmatrix}
V_{p1} \\
V_{p2} \\
\vdots \\
V_{pk} \\
V_s
\end{bmatrix} =
\begin{bmatrix}
Z_{p1p1} & Z_{p1p2} & \cdots & Z_{p1pk} & Z_{p1s} \\
Z_{p2p1} & Z_{p2p2} & \cdots & Z_{p2pk} & Z_{p2s} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
Z_{pkp1} & Z_{pkp2} & \cdots & Z_{pkpk} & Z_{pks} \\
Z_{sp1} & Z_{sp2} & \cdots & Z_{spk} & Z_{ss}
\end{bmatrix}
\begin{bmatrix}
I_{p1} \\
I_{p2} \\
\vdots \\
I_{pk} \\
I_s
\end{bmatrix}
\]
Position independent energy transfer

Constraints for a low variation in output power

• No salient ferromagnetic structures around the cores

• Transfer from sets of three of four secondary coils

• Single layer of primary coils for a maximal output power
Proposed structure

Primary coil array for “unlimited” stroke in xy-plane

- 4 air-cored secondary coils connected in series
- 3 primary coils activated per secondary coil
- Primary and secondary coil height limited to maximal 2 mm

Bottom view

Primary coils

Secondary coil
Final design

Specifications optimized design:
• planar stroke: 200x200 mm²
• nominal acceleration: 5 ms⁻²
• power transfer: 335 W
• variation power transfer: 15%
• Mover size: 37x37 cm²
• moving mass: 9 kg
6 DOF position control & planar tracking

1. Start up
Gap: 0 mm → 1.5 mm

2. Short stroke
Gap: 0.2 mm → 2.5 mm
Rotations: -5 mrad → +5 mrad

3. Long stroke
x and y: max 250 mm

Video
Conclusions

- Novel magnetically suspended planar motor underneath stator
- Passive gravity compensation for low power dissipation & fail-safety
- 6 DOF control and long-stroke movement with three-phase excitation
- Small tracking error

- Integrated design planar motor and CET system
- Energy transfer at every position of the mover
- Low variation in output power
Thank you

Come and see our prototype!
Booth #281